
ENG1 Software Testing
Cohort 3 - Group 28

“Team 28”

Muhammed Salahudheen
Joel McBride
Jamie Rogers
Maciek Zaweracz
Rhys Yeaxlee
Alex Spencer
Alex Firth



Summary
Software testing is an essential part of any software engineering project, but the circumstances of creating a
game force a certain approach. All tests need to be based on the requirements. At minimum every requirement
listed “shall” must be tested for, ideally the tests cover every single requirement. Unit testing is a highly
effective method of testing code functionality due to its speed and objectivity. In games, the high degree of
interactivity limits how much can be tested with Unit Tests. A manual test plan must fill in the gaps, which must
have specific inputs and expected outputs to ensure reliability. If a unit or manual test fails, we must alter the
tested code to ensure adherence to the requirements the tests are based on.

The correspondence between tests and requirements can be found on a table on the website.

2



Test

Unit Tests
AssetsTests exists to check for image and sound files that are essential for users to understand the game
environment. The assets act as affordances that help user navigate the User Interface, so their existence is
essential. These tests are primarily for future proofing, in case assets are replaced these tests make sure that
the files that use the assets actually have the correct path.

PersistenceTest simply checks for the persistent data used to store high scores.

PlayerTests has one test to ensure the position can be changed. The other tests ensure that interactable
objects have the expected bounds.

LeaderboardsTest tests the functionality of the leaderboard, testing whether it can successfully be reset and
written to, and whether it can ensure the scores are presented in order. The last test makes sure that scores
that would rank 11th are not saved to the leaderboard.

All the above tests completely succeeded. In total 21 tests were ran and 21 tests passed. Screenshots
showing the units tests being passed can be found in a zip file on our website.

Manual Tests

3



The above table describes every manual test, including the inputs, where the inputs would be performed, the
expected results and what requirements they address. It should be noted that all but test 19 had unusual game
speeds applied to reduce the time spent on each test. We believe there is little room for that alteration to
corrupt the results.

4



Tests 27 and 28 fail due to the feature they test being unimplemented due to their low priority and time
restrictions. Tests 29 and 30 represent how UR_TIME_SCALE conflicts with UR_TIME_SKIP and
UR_GAME_LENGTH. A game with time skipping mechanics cannot have consistent day lengths.
Out of all the tests of implemented mechanics, only 15 and 19 had failures. These failures were patched and
the subsequent tests succeeded. In total out of 30 manual tests, 25 succeeded on first run, 2 succeeded on
second run and 3 failed.
The testing table and relevant videos can be found on our website.

5



Links
All aforementioned resources can be found at https://eng1team28.github.io/#Test2

● https://eng1team28.github.io/test/ (report output)
● https://eng1team28.github.io/extra/ManualTestPlan.pdf
● https://eng1team28.github.io/extra/Requirements-To-Tests%20Table.pdf
● https://www.youtube.com/watch?v=8wfPOAMYI-s (manual test video)

6

https://team28.tech/#Test2
https://team28.tech/test/
https://team28.tech/extra/ManualTestTable.pdf
https://team28.tech/extra/Requirements-To-Tests%20Table.pdf
https://www.youtube.com/watch?v=8wfPOAMYI-s

