
ENG1 Software Engineering Project Group 25 - F1SH

Architecture
Hannah Thompson

Kyla Kirilov
Ben Hayter-Dalgliesh
Matthew Graham
Callum MacDonald
Chak Chiu Tsang

0



ENG1 Software Engineering Project Group 25 - F1SH

1.1 Initial Architecture

All the diagrams mentioned in this document can be found in the ‘Architecture’ section of our website:
https://publicmutiny.github.io/f1sh-webs1te/.

To ensure that our finished product met the requirements, we began the project by imagining, sketching
and modelling a high-level architecture of the system's layout around the packages and utilities provided
by LibGDX. We utilised LibGDX’s features that enhance the game’s interactive and visual elements like
handling graphics, audio, and input processing. For instance, we integrated the ‘InputProcessor’ for
sophisticated input management, ‘SpriteBatch’ for drawing sprites on the screen, ‘Camera’ to control
what’s visible on the screen and ‘Vector2’ for storing and manipulating points or directions in 2D space.

Using the 'Event Storming' approach, we initially identified key components for our architecture, including
the 'Screen' interface from LibGDX for rendering game views, and the 'Entity' component for managing
entities, starting with 'Player' and extendable to include non-player characters. The 'Screen' component
retrieves necessary data and assets from other components to render the UI efficiently. Recognizing the
utility of segregating game stages, we decided on implementing various screen classes. This approach
not only enhances organisation by separating game phases but also optimises performance. By isolating
resources and processing to the active screen, the game can efficiently manage memory and reduce
loading times, ensuring smoother transitions and making the game more responsive.

From this simplified view of the system, we created the first architectural diagram as a set of
Class-Responsibility-Collaborator (CRC) cards. We first identified all candidate objects and created a
CRC card for each object. Each card contains the name of the class, the responsibility, or purpose of
each candidate, and any other classes that are linked to it (collaborators). The collaboration between
each object is organised using the delegated control style. We grouped similar candidates together and
removed any duplicates. The CRC cards diagram can be found on our website (Architecture, Fig.1).

After reviewing the CRC cards, we identified some problems in our design, particularly with the
MainGameScreen class handling game settings, character choices, energy levels, and audio. Modifying
settings through the MainSettingsScreen class required an active MainGameScreen instance, which
meant there was unnecessary resource usage and performance dips, as both UIs were rendered while in
the settings screen.To solve this problem, GameData class was created to centrally manage game
settings and data. This class is designed to be accessible by other classes. This ensured minimal
performance impact and eliminated the need for MainGameScreen to be active during settings
adjustments.

The sound and music classes (GameSound and GameMusic) were created to handle music and sound
effects after only being called once - this reduces overhead and processing delays by efficiently handling
sound resources. We introduced a ScreenHandler class to prevent performance issues by ensuring only
one screen can be initiated at a time, reducing memory usage and improving game loading times. This
class streamlines screen transitions, freeing up memory when switching screens, thereby enhancing
user experience.

All the new classes were created one week after the CRC cards diagram was finished. We decided to
reflect these changes in the initial class diagrams instead of further modifying the CRC cards diagram so
we can focus on other parts of development. The initial class diagram was created using the CRC cards
diagram as a reference. It can be found on our website (Architecture, Fig.2).

1

https://publicmutiny.github.io/f1sh-webs1te/


ENG1 Software Engineering Project Group 25 - F1SH

1.2 Justification of Tools

PlantUML is a simple and efficient way of creating diagrams that takes little time to learn, is easy to debug and integrates well into other software. We used
it to create class and sequence diagrams, as well as plan our project with Gantt charts. This was easier than manually drawing diagrams because it is
intuitive, and has autofill and suggestions that make the process quicker and easier than any other software. PlantUML was the right choice of tool for our
team because it has good integration with Google Docs and IntelliJ IDEA, the IDE our team chose to use. The created diagrams can be easily exported as
.png files from IntelliJ, and can be placed on our website.

We used the @startgantt/@endgantt to make Gantt charts, and @startuml/@enduml to create class diagrams with ‘packages’. For the sequence diagram,
we used @startuml with ‘autonumber’ and ‘actor’ to define how the user interacts with the front end of the system, which then interacts with the backend.

We created two sequence diagrams to show how the game reacts to users’ input in different situations. The sequence diagrams are shown below, and can
be found on our website (Architecture, Fig.4-5). The second of these diagrams focuses specifically on what happens when the user moves the sprite.

2



ENG1 Software Engineering Project Group 25 - F1SH

The final class diagram is shown below, and can be found on our website (Architecture, Fig.3). We
decided to use multiple packages to group classes:

● The 'screen' package contains all screen related classes except the screen manager.
● All the classes related to sound effect and music are placed in the 'sound' package.
● Classes related to map rendering are placed in the 'map' package.
● Classes that will be used by other packages are placed in the 'utils' package

3



ENG1 Software Engineering Project Group 25 - F1SH

1.3 Evolution of the Architecture

During implementation of the code, we adapted the architecture to suit the specific needs of our
program’s requirements. One problem we encountered was slow transitions to the Main Game Screen
and inefficiencies in saving the 'gameScreenState'.

Initially, our ScreenHandler disposed of screens upon switching, leading to increased loading times and
overhead due to frequent instantiation and data saving to the GameData class, especially for the
resource-intensive MainGameScreen. To enhance performance, we refined ScreenManager to
selectively keep certain screens, like MainGameScreen, in memory while disposing others as needed.
This approach minimises loading delays, reduces data saving overhead, and maintains
MainGameScreen's state for better performance and memory efficiency, ensuring it remains the only
screen in memory when active and improving overall system responsiveness.

Introducing the CollisionHandler class segregates all collision related functionality into a single class,
making the game engine more efficient. This reduces overhead and processor delays, thus ensuring
smoother gameplay and optimising resource use whenever collision functionality is invoked.

Two classes that should have been implemented to segregate functionality are one for choosing gender
and the popup menu, which is mentioned in the docs string in the code above the relevant method. This
is to avoid unnecessary calls within the Player and MainGameScreen class, this separation could have
optimised the code more,

We introduced a popup Menu activated by the CollisionHandler's ‘isTouching’ method, featuring buttons
for different activities next to the player. Selecting 'study' connects MainGameScreen to
TypingGameScreen. Enhancements like a fade effect and eating sounds improve user experience,
signalling completed activities and smoothing transitions, such as starting a new day. Our minigame,
TypingGame, challenges players to memorise and type increasingly long sequences of numbers,
engaging them during study periods. Lastly, we added an EndScreen class that appears after 7 in-game
days, offering options to replay or exit the game.

1.4 Relating the Architecture to the Requirements

FR_INTERACTION_TRIGGER:
Class: CollisionHandler
Role: The CollisionHandler class plays a crucial role in detecting player Interactions with tiles.
isTouching Method: This method is designed to detect when an object is touching tiles of a certain layer
for instance a door, building or tree
Justification: The isTouching Method in CollisionHandler directly contributes to the
FR_INTERACTION_TRIGGER by providing the necessary logic to identify when an interaction-triggering
condition occurs in the game
Class: MainGameScreen
Role: Acts as the main interface for player interaction within the game.
drawPopUpMenu Method: Once the CollisionHandler detects a trigger condition, the MainGameScreen
class responds by generating a popup menu
Justification: The drawPopupMenu Method fulfils the FR_INTERACTION_TRIGGER by providing an
interactive response to the detected player action.

4



ENG1 Software Engineering Project Group 25 - F1SH

FR_COMPLETE_ACTION:
Class: MainGameScreen:
Role: Main interface for player interaction within the game.
Method: touchDown
Justification: This method directly fulfils FR_COMPLETE_ACTION by providing the functionality for the
player to select and complete various activities from the interaction menu. Depending on the player's
touch input, it triggers different actions such as studying, exercising, sleeping, or eating. Additionally, it
handles interaction triggers by displaying a popup menu, allowing the player to choose actions like
studying, eating, or exercising upon touching specific doors.

FR_START_GAME
Class: MainMenuScreen
Role: Representing the main menu screen and handling interactions within it.
Method: touchDown()
Justification: This method processes touch events on the main menu screen. In the context of
FR_START_GAME, it detects when the player touches the "START GAME" button and initiates the
game accordingly.

FR_FULLSCREEN
Class: MainGameScreen
Role: Represents the main gameplay interface where all game elements are rendered, including the
player character, map, UI elements, and pop-up menus.
Method: resize(int width, int height)
Justification: The resize method ensures that all elements on the screen, including the player character,
map, UI elements, and pop-up menus, are properly adjusted and scaled to fit the new window size,
thereby fulfilling the requirement for a full-screen display on any window size.
Class: ScreenManager
Role: Manages the game screens, including creation, switching, and memory management of screens.
Justification: ScreenManager class plays a vital role in ensuring that all screens, including
MainGameScreen, are resized appropriately to maintain full-screen display. Its resize() method iterates
through all screens, including the current screen (MainGameScreen), and adjusts their dimensions to fit
the new window size, thereby fulfilling the requirement for a full-screen display on any window size.

NFR_SCALABILITY
The Architecture of the ScreenManager and GameData class supports further development by another
team:
The ScreenManager class streamlines game screen management, offering an intuitive interface for
screen creation, switching, and memory handling. Its use of a Map for storing screens enhances
efficiency and scalability. The clearMemory() method aids in optimal memory use by removing unneeded
screens, while setScreen() and createScreen() methods simplify adding and creating new screens.
The GameData class centralises game settings, such as gender selection and audio levels, facilitating
easy access and modification. Its methods for setting preferences ensure a straightforward interaction
with game data, promoting modular development and future extensibility.

NFR_EFFICIENCY
The MainGameScreen class architecture reduces CPU and resource usage. Its Efficient Rendering
method updates game elements as needed, clears the screen, and draws world and UI elements
separately to cut down on needless rendering and enhance performance. The dispose() method
disposes of unused resources, preventing memory leaks and optimising resource management.

5



ENG1 Software Engineering Project Group 25 - F1SH

Requirement ID Related Architecture

UR_MOVEMENT The player is able to move the avatar around the 2D map with the use of the Arrow keys. The movement of the Avatar is implemented in the Player
class.The Player class represents the character in the game, handling movement, collision, and animations. The player class uses the setPos method
in order to set the player's position to the specified coordinates adjusting the worldX and worldY variables

UR_CONTROLS The game’s controls are intuitive and are clearly presented to the player on the controls screen which is accessed via the main menu. Visually
explaining the controls of the game is implemented through the MainControlScreen which is associated with the ScreenManager in order for it to be
displayed. The ScreenManager class manages the game screens, including creation, switching, and memory management of screens.

UR_ACCESSIBILITY The game is for new players, so it is easy to understand and play with no prior experience. This is reflected in the games easy to understand User
Interface and the ability to access the main menu whenever.The MainMenuScreen class represents the main menu screen for the game. It handles the
display and interaction with the main menu, including navigating to different parts of the game such as starting the gameplay, viewing controls,
adjusting settings, or exiting the game.

UR_TIME_SCALE In the game, one real-time minute equals one in-game day. The MainGameScreen manages time, updating the timeElapsed and currentHour variables
to track in-game time, ensuring days align with real-time minutes. Three methods handle time display: updateGameTime() cycles active hours (8 AM to
12 AM), resetDay, and drawGameTime(). At 12 AM, the game resets to 8 AM for a new day.

UR_RECREATION There is a building that the avatar can interact with to recreate. The recreation activity that has been used in the game is exercise in the gym. When
exercise is selected the user is offered a choice of hours they would like to spend exercising from 1 to 4. When a time is selected a time skip occurs
and the recreation count is incremented. For the MainGameScreen the code for recreation is within the touchdown() method.

UR_STUDYING There is a building that the avatar can interact with to study. There are two buildings where the studying action can be started from. When selected the
user will be prompted to select the amount of hours and then afterwards the studying minigame will start. Within the MainGameScreen class the
method touchdown() is in charge of commanding the study activity. The method uses ScreenManager in order to switch to the minigame.

UR_SLEEPING There is a building that the avatar can interact with to sleep. Sleeping can only be started after 8pm and is automatically completed when every day is
over. After sleeping has finished, your character's position is placed outside the sleeping building. In the class MainGameScreen the method
touchDown() is where the sleeping function is selected. A fade out is activated and the energy bar is reset.

UR_EATING There is a building that the avatar can interact with to eat. In the class MainGameScreen the method touchDown(), along with the use of a switch
statement is used to determine when to proceed with the sleeping function. When eating is selected the game data class is needed to be called in
order to activate the associated sound. When eating is commenced the energyCounter is increased by 3 and the mealCount is incremented.

6


