
ENG1 Software Engineering Project Group 25 - F1SH

Method Selection
and Planning

Hannah Thompson
Kyla Kirilov

Ben Hayter-Dalgliesh
Matthew Graham
Callum MacDonald
Chak Chiu Tsang

0



ENG1 Software Engineering Project Group 25 - F1SH

1.1 Software Engineering Methods

Our team is adopting an agile approach to software development because of its flexible and adaptive
nature. An iterative approach allows for regular reassessment of our actions in response to changing
requirements and priorities.

By aligning our use of agile methodology with the timetabled practical sessions provided by the
department, we . In order to have completed the deliverables by the six-week deadline, we treated each
week as a ‘sprint’ and held meetings twice a week to discuss the progress and outcomes of that sprint.

In the first week, we held the project’s ‘kickoff meeting’, in which we addressed the briefing, discussed
ideas and allocated resources, as detailed below in ‘2.1 Approach to Team Organisation’. In this
meeting, we discussed the sequence of tasks involved in each deliverable. A high-level view of our work
breakdown structure can be found on our website under ‘Method Planning and Selection, Fig. X’, and is
elaborated on in section 3.1 of this document.

From here onwards, we will meet in-person on Tuesdays to check-in with the progress of the sprint, and
on Fridays to define objectives for the next week’s sprint. Tasks from the work breakdown will be
assigned to either individuals or sub-teams. A record of these meetings can be found on our website
under ‘Method Planning and Selection - Meeting Minutes’.

1.2 Development and Collaboration Tools

We have chosen to use IntelliJ IDEA as our team’s IDE as we find it to have the most appealing, refined
interface, as well as being customisable. Compared to other IDEs (such as Eclipse) IntelliJ has better
support for GitHub desktop and Gradle builds, which are discussed below.

Originally, we explored the functionality of Eclipse - however, we found it was incompatible with GitHub
desktop. When cloning a repository that has LibGDX imported, all of the classes are not recognised as a
type; therefore, we chose to switch to IntelliJ to mitigate this issue.

To facilitate reliable version control for the duration of our project, we unanimously decided to use
GitHub’s desktop application, which we installed onto our local machines and connected to our individual
GitHub accounts. An alternative to GitHub desktop is the Git command line interface, or interacting with
the repository directly through the IDE using Personal Access Tokens (PAT). However, these processes
are cumbersome and time-consuming, which makes it difficult for all members of our team to follow the
same process and avoid user errors that threaten the reliability of our version control system.
Consequently, we are using GitHub desktop to take advantage of its visual interface and user-friendly
nature, which will be particularly beneficial to the members of our team who have no previous experience
using Git.

Furthermore, our decision to employ LibGDX as our Java game development framework stems from its
robust capabilities and intuitive implementation. Through our initial research, we concluded that LibGDX
offers straightforward concepts, exemplified by the “render()” and “dispose()” methods that have clear
functionality. Additionally, it is extremely well-documented and has a comprehensive Wiki page that
boasts support from setting up a development environment to adding in-game music. Alongside LibGDX,
we are using Gradle - a build automation tool for software development. This aids us in compiling, linking

1



ENG1 Software Engineering Project Group 25 - F1SH

and packaging the code into a single application that runs on various operating systems. Gradle can be
seamlessly integrated into IntelliJ IDEA with the help of extensions, which makes our adapted IDE an
ideal environment in which to create our project.

For building the game map, Tiled appears to be the easiest software to use. Due to Tiled’s free and
flexible interface, we decided to use it as our designated map editor and builder. There are many
reasons that can justify why Tiled is suitable, starting with ease of use of its intuitive drag-and-drop
functionality to build maps in sections. Tiled also proved to be very compatible with our project as
LibGDX has a plethora of libraries to handle the .tmx file that maps are generated in. Overall, Tiled is
robust, with countless useful features: multiple layers, custom properties, tileset animations, and object
grouping, among others.

2



ENG1 Software Engineering Project Group 25 - F1SH

2.1 Approach to Team Organisation

Our team chose to divide its members into two departments in order to accommodate the workload
described in the project briefing.

The development team, made up of Kyla Kirilov, Ben Hayter-Dalgliesh, and Matthew Graham, is
responsible for writing the code for our system. Managed by Kyla, this team is building the game from
the elicited requirements, and meets regularly to negotiate and develop new ideas. The team works
horizontally on different sections of the code, and collaborates with Kyla to integrate them into the
system.

The documentation team, consisting of Hannah Thompson, Callum MacDonald and Chak Chiu Tsang, is
assigned to write up the required documentation for the project. Each member of this team is responsible
for maintaining and updating one or more of the deliverables, such that the division of marks is equal.
For every deliverable, the team meets to review changes and evaluate the progress, with all members of
the team adding their own relevant contributions.

The teams meet twice a week, both online and in-person, to discuss and demonstrate development and
make necessary updates to the documentation, such as reviewing the risk assessment and auditing the
requirements. Both teams display the progress they have made in that week, and collaborate to solve
problems with the code or documentation.

This approach plays both to our individual strengths - ensuring that those more proficient in writing code
or documentation are utilising their skills - and helps to avoid overcrowded collaboration on each
deliverable. Similarly, it allows us to divide the workload evenly between all team members, taking into
account the weighting of each task and deliverable.

3



ENG1 Software Engineering Project Group 25 - F1SH

3.1 Systematic Plan for the Project: Key Tasks and Dates

Our initial meeting produced a high-level work breakdown, which can be found on our website (‘Method
Planning and Selection, Fig. 1’). This is an overview of the components required for each deliverable,
broken down into atomic tasks that can be completed by an individual or team. The deliverables, labelled
D1-D6, correspond to section 3.3.1 of the ENG1 Team Assessment document. By taking each
deliverable and breaking it into a series of smaller tasks, we were able to generate a systematic plan for
the following weeks, taking into account the dependencies of each task.

From this diagram, we created an initial Gantt chart that lays out the key tasks and their ownership. This
chart, which can be found on our website (‘Method Planning and Selection, Fig. 2’) shows how the
project will develop over the first week. Each week, we reviewed our progress during the previous week
and updated the Gantt chart to plan for the next weeks’ tasks. Weekly snapshots of the plan can be
found on our website (‘Method Selection and Planning, Fig.2-6’).

In week 1, we focused on setting up the collaborative tools discussed in the previous sections, as well as
researching methods, assets, and techniques that would be useful for our project. We also created a
prototype of the game, implementing only a sprite moving around a map. Due to issues with our IDE
choice and integrating LibGDX, as well as waiting for a client meeting, we postponed implementation by
a week to ensure that we were fully prepared to begin writing the code.

Our client meeting took place in week 3, which meant that our requirements could not be fully elicited
until this point. Once the meeting was concluded, the requirements were defined and the process of
writing the documentation was fully implemented. Therefore, during week 2, when we were unable to
begin writing the code, the documentation team prepared the website, risk assessment, and architecture
documents, while the development team prototyped simple modules and constructed the game map.
Despite not being able to properly start the implementation, our development team was eager to become
as comfortable as possible with the chosen IDE and game engine.

In week 3, the player animation and movement were completed, finalising the first prototype of the game.
Some assets were selected this week, along with communicating concept designs for the game and its
appearance. This week went very smoothly, and no issues arose.

In week 4, after the requirements elicitation had concluded, we held another meeting to plan the
implementation and architecture going forward. The development team leader noticed that the pace of
implementation was not up to speed and that certain individuals in the team were unsure of what needed
to be done. To resolve this, we created a checklist of key features of the system, using the requirements
as a starting point and decomposing them into smaller, more manageable tasks that included
self-constructed deadlines. Since the workload at this point was heavy on development, the
documentation team assisted by working on the code alongside the other deliverables. This meant that
progress on documentation briefly stalled, but since there were dependencies on the code, this approach
worked well for our team. This led to the completion of the map, energy bar, and activity counters.

In week 5, the project focused on completing the code, ensuring it met the requirements and that the
system worked as expected from start to finish. This week, our aim was to complete map collisions,
music/SFX, and all GUIs. Everything went according to plan, except for the loss of one GUI's code
during the merging of code versions through GitHub Desktop. This setback was unexpected; however, it
was quickly resolved by having one of the developers, who had already completed their tasks for the

4



ENG1 Software Engineering Project Group 25 - F1SH

week, redo the code. During this week, it appeared that the team member responsible for creating
diagrams with PlantUML was struggling a bit, due to many of the diagrams being reliant on the code,
which was only slowly coming together. This issue was addressed by the development team discussing
plans for code that would specifically aid in the creation of diagrams. Overall, the architecture was more
behind than other sections of the project, but this was simply resolved through some motivation.

Week 6 was when we made the finishing touches to everything, especially cleaning up the code and
adding comments so that whoever may take over can understand everything clearly. Along with
implementing a game end screen, a simple minigame to simulate studying was added, and we created
our own eating sound effect for in-game use. After creating an executable for the game, the workload
this week proved to be a bit too much for everyone. This didn't go according to plan, and we should've
discussed how to even out the workload among everyone in the week leading up to submission.

Finally all the deliverables, executables, and documentation were added to the website for submission.

5


